Fotodiox Lens Mount Adapter thread 42mm New product!! Blk M42 (Blk),,(42mm,/dipolarization289799.html,Electronics , Camera Photo , Accessories,Mount),webtest.works,Fotodiox,thread,Mount,Lens,$7,Lens,Adapter,M42 $7 Fotodiox Lens Mount Adapter (Blk), M42 Lens (42mm thread Mount) Electronics Camera Photo Accessories $7 Fotodiox Lens Mount Adapter (Blk), M42 Lens (42mm thread Mount) Electronics Camera Photo Accessories Fotodiox Lens Mount Adapter thread 42mm New product!! Blk M42 (Blk),,(42mm,/dipolarization289799.html,Electronics , Camera Photo , Accessories,Mount),webtest.works,Fotodiox,thread,Mount,Lens,$7,Lens,Adapter,M42
If you have a SLR or DSLR camera and other maker/mount lenses, the Fotodiox Mount Adapters allow you to use your lenses on the film/digital camera body. Sharing lenses has some distinct advantages. Certain prime lens just can't be replaced, and you save the cost of purchase on new lenses. Fotodiox offers a range of adapter from large format to smaller format digital adapters. Adapting larger format lens to smaller format sensors (i.e: large format to medium format, medium format to 35mm, 35mm to micro 4/3) provides excellent edge-to-edge sharpness. The smaller image field helps minimize the effects of lens distortion and aberration by using the 'sweet spot' or center of the larger lens image circle.
Although the lens will fit physically, automatic diaphragm, auto-focusing, or any other functions will not operate correctly while using this adapter. In this case 'stop-down mode' will need to be used when metering since the lens does not have the ability to have its aperture controlled by the camera body. You can shoot with manual mode or aperture priority mode. Focusing is limited; due to the focal flange distance and depth of the adapter, infinity focus is not achievable with this adapter.
Compatible Cameras (including, but not limited to): Pentax K Mount bodies K-7, K-x, K-r, K-5, K-01, K-30, K-5II, K-5IIs, K-500, K-50, K-3, K-S1
Actual product packaging and contents may differ from image shown due to packaging or product updates by manufacturer.
The zebrafish is a small tropical fish that has become one of the favoured animal model systems for research in many areas including embryonic development, genetic analyses of disease, neural circuit function and behaviour. One reason for this popularity is that zebrafish embryos are optically transparent and genetically tractable making them ideally suited for studies of cell and tissue behaviour and function. Zebrafish also exhibit sleep, social, hunting and other complex behaviours and progress in understanding the neuroanatomy of the brain is facilitating studies of the neural circuits mediating these behaviours.
On this site, you can learn about the wide range of research projects at UCL that use zebrafish and see many beautiful images and movies from these projects. We appreciate that not all our visitors are trained scientists and so we have public outreach pages that help to explain what we do.
There are many research groups using zebrafish for research at UCL and you can find out about some of them here, or continue reading about Zebrafish at UCL.
Zebrafish research at UCL is supported by a team of core staff, who you can read about here.
COVID 19 UPDATE: Due to the current situation ZebrafishUCL are unable to offer any work-experience placements or lab visits this or next academic year(2020/2021). For more information about the programme click button below.
Many of our images are available for download from Wellcome Images.
Simply search the collection for 'Zebrafish'. All images and movies are copyright of UCL Zebrafish Group please request permission before using.
In the fish labs we love doing experiments, but we also love sharing our enthusiasm for science and for zebrafish with others. That is why we take our outreach activities very seriously.
We are committed to promoting science, critical thinking and education of young people via our Outreach Activities. Our aim is to reach students from all backgrounds, help them to engage with STEM and to gain an insight into the opportunities available in higher education and STEM research.
COVID 19 UPDATE: Due to the current situation ZebrafishUCL are unable to offer any workexperience placements or lab visits this or next academic year(2020/2021).
We offer a range of outreach activities, both ‘in classroom’ workshops, as well as ‘on-campus’ at UCL. Please choose an option below to explore our outreach programs. Please note that only teachers may request school visits from zebrafish researchers(LAB2SCHOOL) and visits to the zebrafish lab for school students(SCHOOL2LAB).
NB: As we are a research lab, we can only offer the outreach activities mentioned above to a limited number of students and school groups. We hope, that we can expand our programme in the future to offer these opportunities to more and more students!
Read about what the Zebrafish Lab have been doing to spread our love of science.
Since the in2scienceUK project was established in 2010 we’ve hosted students in the lab on a yearly basis.
Güliz was invited to discuss her research in sleep disturbances and their implications in Alzheimer’s patients at the Wellcome Trust free lunchtime event, Packed Lunch.
This summer, the Rihel lab hosted an AS level Student, Katrina Gadsby, for a week and a half.
Native Portuguese speakers Ana and Renato organised an exciting Portuguese science session at St. Mary's Roman Catholic Primary School in London as part of the Native Scientist program
The UCL fish facility houses hundreds of lines of fish for the many investigators at UCL using zebrafish for their research. Visit their webpage to read more about the research they perform and the training and services they offer.
Many of our images are available to download from Wellcome Images - simply search the collection for 'zebrafish'.
If you work with Zebrafish at UCL, click here for access to: QUARTZY, protocols, MISEQ, Galaxy, CRISPResso, zebrafishbooking (password protected).
ZebrafishUCL are focussing on 3 key areas to make our research more sustainable. Please follow the links below to read more about how we are reducing single-use plastics, energy consumption and other cultural changes to improve sustainability in our lab.
For a full list of Zebrafish UCL publications by year click here, or choose a year below. You can also visit our publication summaries page to find summaries of papers that need less scientific knowledge to understand.
Kroll F, Powell GT, Ghosh M, Antinucci P, Hearn TJ, Tunbak H, Lim S, Dennis HW, Fernandez JM, Hoffman EJ, Whitmore D, Dreosti E, Wilson SW and Rihel J (2021).
A simple and effective F0 knockout method for rapid screening of behaviour and other complex phenotypes.
Elife: e59683.
Barlow IL, Mackay E, Wheater E, Goel A, Lim S, Zimmerman S, Woods I, Prober DA, Rihel J (preprint).
A genetic screen identifies dreammist as a regulator of sleep.
bioRxiv 2020.11.18.388736; doi: https://doi.org/10.1101/2020.11.18.388736
Rihel J (2020).
Sleep Across the Animal Kingdom. in Sleep Science
Oxford University Press, pages 15-31
Ozcan GG, Lim S, Leighton PLA, Allison WT, Rihel J (2020).
Sleep is bi-directionally modified by amyloid beta oligomers.
Elife Jul 14;9:e53995. doi: 10.7554/eLife.53995
Haas AJ, Zhini C, Ruppel A, Hartmann C, Ebnet K, Tada M, Balda M, Matter K (2020)
Interplay between extracellular matrix stiffness and JAM-A regulates mechanical load on ZO-1 and tight junction assembly.
Cell Reports 32, 107924.
Takeuchi Y, Narumi R, Akiyama R, Vitiello E, Shirai T, Tanimura N, Kuromiya K, Ishikawa S, Kajita M, Tada M, Haraoka Y, Akieda Y, Ishitani T, Fujioka Y, Ohba Y, Yamada S, Hosokawa Y, Toyama Y, Matsui T, Fujita Y (2020)
Bird Wall Art Print - Unframed - 8x10s
Curr. Biol. 30, 670-681.
Griffiths VA, Valera AM, Lau JYN, Ros H, Marin B, Baragli C, Coyle D, Evans GJ, Konstantinou G, Younts TJ, Koimtzis T, Srinivas Nadella KMN, Kirkby PA, Bianco IH and Silver RA.
Real-time 3D movement correction for two-photon imaging in behaving animals.
Nat Methods (2020). doi.org/10.1038/s41592-020-0851-7
Hande Tunbak, Mireya Vazquez-Prada, Thomas Ryan, Adam R. Kampff and Elena Dreosti
Whole-brain mapping of socially isolated zebrafish reveals that lonely fish are
not loners.
eLife (2020);9:e55863 DOI: 10.7554/eLife.55863
Mione MC, Blader P, Del Bene F, Trompouki E and Bianco IH.
YINZHI Laptop Screen Protector Film Laptop Screen HD Tempered Gl
Frontiers in Cell and Developmental Biology (2020)
Ghosh M and Rihel J
Hierarchical compression reveals sub-second to day-long structure in larval zebrafish behaviour.
eNeuro(2020). https://doi.org/10.1523/ENEURO.0408-19.2020
Dreosti E, Hoffman EJ, and Rihel J
Modelling autism spectrum disorders in zebrafish.
In: Gerlai RT (ed). Behavioral and Neural Genetics of Zebrafish(2020). San Diego: Elsevier Inc./Academic Press: pp-pp. 451-471
Lyons DG and Rihel J
Sleep circuits and physiology in non-mammalian systems.
Current Opinion in Physiology (2020).https://doi.org/10.1016/j.cophys.2020.03.006
Antinucci P*, Dumitrescu AS*, Deleuze C, Morley HJ, Leung K, Hagley T, Kubo F, Baier H, Bianco IH*, Wyart C*.
A calibrated optogenetic toolbox of stable zebrafish opsin lines.
eLife (2020) 9:e54937 10.7554/eLife.54937
Folgueira M, Riva-Mendoza S, Ferreño-Galmán N, Castro A, Bianco IH, Anadón R and Yáñez J. Anatomy and Connectivity of the Torus Longitudinalis of the Adult Zebrafish.
Front. Neural Circuits (2020) 14:8. The Foundation
Schwayer C, Shamipour S, Pranjic-Ferscha K, Schauer A, Balda M, Tada M, Matter K, Heisenberg CP (2019)
Mechanosensation of tight junctions depends on ZO-1 phase separation and flow.
Cell 179, 937-952.
Gebhardt C, Auer TO, Henriques PM, Rajan G, Duroure K, Bianco IH*, Del Bene F*.
An interhemispheric neural circuit allowing binocular integration in the optic tectum.
Nature Communications (2019) 10, 5471.
doi:10.1038/s41467-019-13484-9
Shibata-Germanos, S., Goodman, J.R., Grieg, A. et al.
Structural and functional conservation of non-lumenized lymphatic endothelial cells in the mammalian leptomeninges.
Acta Neuropathol (2019). https://doi.org/10.1007/s00401-019-02091-z
Antinucci P, Folgueira M, Bianco IH.
Pretectal neurons control hunting behaviour.
eLife (2019) 8 doi.org/10.7554/eLife.48114
Sabine Reichert, Oriol Pavón Arocas, Jason Rihel
The Neuropeptide Galanin Is Required for Homeostatic Rebound Sleep following Increased Neuronal Activity
Neuron (2019) DOI:https://doi.org/10.1016/j.neuron.2019.08.010
Ingrid Lekk , Véronique Duboc, Ana Faro, Stephanos Nicolaou, Patrick Blader, Stephen W Wilson.
Sox1a mediates the ability of the parapineal to impart habenular left-right asymmetry.
eLife 2019;8:e47376 DOI: 10.7554/eLife.47376
Henriques PM, Rahman N, Jackson SE, Bianco IH.
Nucleus Isthmi is required to sustain target pursuit during visually guided prey-catching.
Current Biology (2019) 29:1771-1786. doi.org/10.1016/j.cub.2019.04.064
Lau JYN, Bianco IH, Severi KE.
Cellular-level understanding of supraspinal control: what can be learned from zebrafish?
Curr Opin Physiol (2019) 8:141 doi.org/10.1016/j.cophys.2019.01.013
Young RM, Hawkins TA, Cavodeassi F, Stickney HL, Schwarz Q, Lawrence LM, Wierzbicki C, Cheng BY, Luo J, Ambrosio EM, Klosner A, Sealy IM, Rowell J, Trivedi CA, Bianco IH, Allende ML, Busch-Nentwich EM, Gestri G, Wilson SW.
Compensatory growth renders Tcf7l1a dispensable for eye formation despite its requirement in eye field specification.
Elife. (2019) 8. doi: 10.7554/eLife.40093
Turner KJ, Hoyle J, Valdivia LE, Cerveny KL, Hart W, Mangoli M, Geisler R, Rees M, Houart C, Poole RJ, Wilson SW, Gestri G.
Abrogation of Stem Loop Binding Protein (Slbp) function leads to a failure of cells to transition from proliferation to differentiation, retinal coloboma and midline axon guidance deficits.
PLoS One. 2019 Jan 29;14(1):e0211073. doi: 10.1371/journal.pone.0211073. eCollection 2019.
Tube The nearest underground stations are Euston Square, Euston and Warren Street. We are only a few blocks away from any of these stations.
Buses Southbound routes 10, 24, 29, and 73 pass by UCL’s main gate; northbound routes stop at Warren Street station.
1st Floor, Anatomy Building
UCL
Gower Street
WC1E 6BT
tel: 020 3549 5652
General & technical enquiries
email: k.mackie@ucl.ac.uk
Kate Mackie
Outreach/ Work experience/Academic Enquiries
email: a.barth@ucl.ac.uk
Anukampa Barth
For information specific to a research group...
Wilson lab s.wilson@ucl.ac.uk
Bianco lab i.bianco@ucl.ac.uk
Tada lab m.tada@ucl.ac.uk
Dreosti lab e.dreosti@ucl.ac.uk
Rihel lab j.rihel@ucl.ac.uk
Alexandre lab p.alexandre@ucl.ac.uk
Hawkins lab t.hawkins@ucl.ac.uk
Payne Lab e.payne@ucl.ac.uk
Frankel Lab p.frankel@ucl.ac.uk
MacDonald Lab macdryan@gmail.com
Tuschl Lab k.tuschl@ucl.ac.uk